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Abstract

The almost everywhere convergence rates of Fourier–Laplace series are given for functions

in certain subclasses of L2ðSn�1Þ defined in terms of moduli of continuity.
r 2004 Elsevier Inc. All rights reserved.
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1. Introduction and main results

Let nX3 and let Sn�1 ¼ fðx1; y ; xnÞ : x21 þ?þ x2n ¼ 1g be the unit sphere of Rn

equipped with the normal Lebesgue measure. Let fAL2ðSn�1Þ and let

fBsðf ÞðxÞ :¼
XN
k¼0

Ykð f ÞðxÞ ð1Þ
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be the Fourier–Laplace series of f ; where Yk is the projection operator from

L2ðSn�1Þ to the space of all spherical harmonics of degree k: The Cesàro means of
order d of sð f Þ are defined as usual by

sdNð f Þ :¼ ðAd
NÞ

�1XN

k¼0
Ad

N�kYkð f Þ;

where

Ad
N ¼ GðN þ dþ 1Þ

Gðdþ 1ÞGðN þ 1Þ; d4� 1; ð2Þ

are the coefficients of the power series of the function ð1� xÞ�d�1; jxjo1; i.e.

ð1� xÞ�d�1 ¼
XN
k¼0

Ad
kxk: ð3Þ

It is obvious that s0Nð f Þ ¼
PN

k¼0Ykð f Þ is just the Nth partial sum of the Fourier–

Laplace series of f :

Our main purpose is to find the convergence rate of s0Nð f Þ on a set of full measure
in Sn�1 for any f in certain subclasses of L2ðSn�1Þ defined in terms of modulus of
continuity.
In order to define modulus of continuity on the sphere, we first introduce the

translation operator Sy with step yAR: As in [7, p. 58], we define

Syð f ÞðxÞ :¼ 1

jSn�2j

Z
fyASn�1: xy¼0g

f ðx cos yþ y sin yÞ dcðyÞ;

here xASn�1 and dcðyÞ denotes the usual Lebesgue measure elements on the n � 2
dimensional manifold fyASn�1: xy ¼ 0g: We know (see [7, p. 61, (2.4.6)]) that, for
every k ¼ 0; 1; 2; y ;

YkðSyð f ÞÞ ¼ Pn
kðcos yÞYkð f Þ;

where Pn
k is Gegenbauer polynomial defined by

Pn
kðtÞ ¼

P
n�3
2

;
n�3
2

� �
k ðtÞ

P
n�3
2

;
n�3
2

� �
k ðtÞ

; jtjp1; ð4Þ

with P
ða;bÞ
k being Jacobi polynomial. By the formulas [6, p. 58, (4.1.1)] and [p. 168,

(7.32.2)], we have

jPn
kðcos yÞjp

1;
g

ðkyðp� yÞÞ
n�2
2

; for all yAð0; pÞ;

8><
>: ð5Þ
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where g41 is a constant depending only on n: Then we get

jjSyð f Þjj2 ¼
XN
k¼0

jPn
kðcos yÞj

2jjYkð f Þjj22

 !1
2

pjj f jj2:

Thus, we conclude that as an operator from L2ðSn�1Þ to L2ðSn�1Þ; Sy has
norm 1; that is, jjSyjjðL2ðSn�1Þ;L2ðSn�1ÞÞ ¼ 1: Let I be the identity operator and let s be a

positive number. We set csðuÞ :¼ ð1� uÞ
s
2: Following [5], we call the operator

Ds
y :¼ ðI � SyÞ

s
2 ¼

XN
k¼0

cðkÞ
s ð0Þ
k!

Sk
y

an sth order difference operator. It is obvious that

jjDs
yjjðL2ðSn�1Þ;L2ðSn�1ÞÞp

XN
k¼0

jcðkÞ
s ð0Þj
k!

oN:

We define (as in [5]) the sth order modulus of continuity of a function fAL2ðSn�1Þ by
osð f ; tÞ2 :¼ supfjjDs

u f jj2: 0ouptg:

Since all of our discussion are in L2ðSn�1Þ; in what follows, we will omit the
subscription ‘‘2’’ in the norm and in the moduli.

It is well known (see [5]) that, for 0oaob and fAL2ðSn�1Þ;
obð f ; tÞpCða; bÞoað f ; tÞ; ð6Þ

where Cða;bÞ is a constant depending only on a and b:

Definition 1. Let s40; rAR; and fAL2ðSn�1Þ: IfZ 1

0

osð f ; tÞ2

t
logr 2

t

� 
dtoN;

then we say that f satisfies the condition ðfs; rgÞ:

Our first result is the following theorem:

Theorem 1. Let rX1: If there exists s40 such that f satisfies the condition ðfs; rgÞ;
then

s0Nð f ÞðxÞ � f ðxÞ ¼ o
1

log
r�1
2 N

0
@

1
A as N-N

holds on Sn�1 almost everywhere.

Our second theorem is about the case 0pro1:
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Theorem 2. Let 0pro1: If there exists s40 such that f satisfies the condition ðfs; rgÞ;
then

lim
N-N

log
r�1
2 Nðs0Nð f ÞðxÞ � f ðxÞÞ ¼ 0

holds on Sn�1 almost everywhere.

Remark 1. Since the modulus of continuity is defined in square integrable terms, the

convergence rate in L2-norm can be obtained easily. For example, if f satisfies the
condition ðf2; rgÞ; i.e.

frþ1
2
B
XN
k¼0

log
rþ1
2 ðk þ 2ÞYkð f Þ AL2ðSn�1Þ;

then we can easily get

jjs0Nð f Þ � f jj2 ¼
XN

k¼Nþ1
log�ðrþ1Þðk þ 2ÞjjYkð frþ1

2
Þjj22

( )1
2

¼ o
1

log
rþ1
2 ðN þ 2Þ

0
@

1
A:

This order log�
rþ1
2 N is better than the almost everywhere convergence rate

log�
r�1
2 N:

Remark 2. Both Theorems 1 and 2 have the same form. However, when rX1; we
really get the convergence rate like Theorem 1; when 0pro1; we cannot conclude

whether s0Nð f Þ converges almost everywhere but get only the almost everywhere
convergence of log

r�1
2 Nðs0Nð f Þ � f Þ:

Before proving the theorems, we will introduce some function classes related to the

condition ðfs; rgÞ: Given a function fAL2ðSn�1Þ and a positive number r; if

XN
k¼0

log2rðk þ 2ÞjjYkð f Þjj22oN;

then we say fAL2
r ðSn�1Þ and write

fr ¼
XN
k¼0

logrðk þ 2ÞYkð f Þ in L2ðSn�1Þ sense: ð7Þ

In Section 2, we give a characterization for the function class L2
r ðSn�1Þ in

terms of the modulus of continuity. In Section 3, we give a domination for
maximal partial sum with ‘‘log’’ factor of Fourier–Laplace series which plays
the key role for proving the main theorems. In Section 4 we complete the proofs of
the theorems.
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2. Characterization of the class L2
r ðRn�1Þ

Theorem 3. Let r4� 1: The necessary and sufficient condition for fAL2
rþ1
2

ðSn�1Þ is

that f satisfies ðf2; rgÞ:

Proof. Assume fAL2
rþ1
2

ðSn�1Þ first. Then

frþ1
2
ðxÞBsð frþ1

2
ÞðxÞ :¼

XN
k¼0

log
rþ1
2 ðk þ 2ÞYkð f ÞðxÞ:

We have

D2t ð f ÞB
XN
k¼1

ð1� Pn
kðcos tÞÞYkð f Þ

and

jjD2t ð f Þjj2 ¼
XN
k¼1

ð1� Pn
kðcos tÞÞ2jjYkð f Þjj2: ð8Þ

Applying the formula (see [6, p. 81], [7, p. 31])

d

dt
Pn

kðtÞ ¼
kðk þ n � 2Þ

n � 1
Pnþ2

k�1ðtÞ;

we have

1� Pn
kðcos yÞ ¼

kðk þ n � 2Þ
n � 1

Pnþ2
k�1ðcos xÞð1� cos yÞ;

where xAð0; yÞ: Taking (5) into account, we hence have
0p1� Pn

kðcos yÞpðkyÞ2: ð9Þ

It follows from (5) and n�2
2
X

1
2
that

jPn
kðcos yÞjp1

2
for yAð0; 1Þ and kyX4g2: ð10Þ

Write

dkðtÞ ¼ supfj1� Pn
kðcos yÞj

2: 0pyptg; tAð0; 1Þ:

By (8) we getZ 1

0

o2ð f ; tÞ2

t
logr 2

t

� 
dtp

XN
k¼1

Z 1

0

dkðtÞ
t

logr 2

t

� 
dtjjYkð f Þjj2:

Applying (9) and (10), we have

dkðtÞp
1; 4g2k�1oto1; k44g2;

ðktÞ4; 0otp4g2k�1; k44g2;

ðktÞ4pBnt4; 0oto1; kp4g2;

8><
>: ð11Þ
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where Bn is a constant depending only on n: From (11) we derive thatZ 1

0

dkðtÞ
t

logr 2

t

� 
dtpBn log

rþ1ðk þ 2Þ:

Since fAL2
rþ1
2

ðSn�1Þ as an assumption, we see that f satisfies the condition

ðf2; rgÞ:
We now assume that f satisfies the condition ðf2; rgÞ: We start from (8). Then

XN
k¼1

Z 1

0

ð1� Pn
kðcos tÞÞ2t�1 logr 2

t

� 
dtjjYkð f Þjj2

¼
Z 1

0

jjD2t ð f Þjj2t�1logr 2

t

� 
dtoN:

Hence

XN
k44g2

Z 1

4g2k�1
ð1� Pn

kðcos tÞÞ2t�1 logr 2

t

� 
dtjjYkð f Þjj2oN:

So, by (10) we obtain

XN
k44g2

Z 1

4g2k�1
t�1 logr 2

t

� 
dtjjYkð f Þjj2oN;

which implies fAL2
rþ1
2

ðSn�1Þ: &

3. Domination for Fourier–Laplace partial sums with log factors

From (2) we derive the well-known formula for Cesàro numbers:

A
aþb
k ¼

Xk

j¼0
Aa�1

k�j A
b
j ; a40; b4� 1:

By this formula and (3) we get, for fAL2ðSn�1Þ;

s0Nð f Þ ¼
XN

k¼0
A

� 1
2

N�kA
� 1
2

k s
� 1
2

k ð f Þ: ð12Þ

Denote by sa� the maximal Cesàro operator of order a; that is,

sa�ð f ÞðxÞ :¼ supfjsakð f ÞðxÞj : kANg; a4� 1; xASn�1:

It is well known (see [1]) that, for a40; sa� is bounded from L2ðSn�1Þ to L2ðSn�1Þ:
We introduce an operator on L2ðSn�1Þ as follows:
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Definition 2. For fAL2ðSn�1Þ; define

dð f Þ :¼
XN
k¼0

jA� 1
2

k ðs�
1
2

k ð f Þ � s
1
2
kð f ÞÞj2

 !1
2

:

By (12), applying Schwarz inequality, we have

js0Nð f Þjp
XN

k¼0
A

� 1
2

N�kA
� 1
2

k js�
1
2

k ð f Þ � s
1
2
kðf Þj þ

XN

k¼0
A

� 1
2

N�kA
� 1
2

k js
1
2
kð f Þj

p
XN

k¼0
ðA� 1

2
N�kÞ

2

 !1
2

dð f Þ þ s
1
2�ð f Þ

pC log
1
2ðN þ 2Þdð f Þ þ s

1
2�ð f Þ; ð13Þ

where C is a proper constant.

Lemma 1. The operator d is bounded from L2
1
2

ðSn�1Þ to L2ðSn�1Þ; i.e.

jjdð f ÞjjpCjjf1
2
jj for fAL2

1
2

ðSn�1Þ;

where C is a proper constant.

Proof. We have

s
� 1
2

k ð f Þ � s
1
2
kð f Þ ¼ 1

A
� 1
2

k

Xk

j¼0
A

� 1
2

k�j 1�
A

� 1
2

k A
1
2
k�j

A
� 1
2

k�jA
1
2
k

0
B@

1
CAYjð f Þ

¼ 1

A
� 1
2

k

Xk

j¼0
A

� 1
2

k�j

j

k þ 1
2

Yjð f Þ:

So,

jjdð f Þjj2 ¼
Z
Sn�1

XN
k¼1

Xk

j¼1
A

� 1
2

k�j

j

k þ 1
2

Yjð f ÞðxÞ
�����

�����
2

dx

¼
XN
k¼1

Xk

j¼1
A

� 1
2

k�j

j

k þ 1
2

�����
�����
2

jjYjð f Þjj2

pC
XN
j¼1

XN
k¼j

j2

ðk � j þ 1Þk2 jjYjð f Þjj2
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pC
XN
j¼1

logðj þ 1ÞjjYjð f Þjj2

pCjjf1
2
jj2: &

Definition 3. Let a4� 1: For fAL2ðSn�1Þ; define
rað f ÞðxÞ :¼ supfloga Njs0Nð f ÞðxÞj : NX3g ð14Þ

hað f ÞðxÞ :¼ supfloga Nj f ðxÞ � s0Nð f ÞðxÞj : NX3g: ð15Þ

Lemma 2. For fAL2
1
2

ðSn�1Þ;

jjr� 1
2
ð f ÞjjpCjjf1

2
jj:

Proof. This is a direct consequence of (13), Lemma 1, and the boundedness

of s
1
2�: &

Corollary 1. If fAL2
1
2

ðSn�1Þ; then

lim
N-N

log�
1
2 Njs0Nð f ÞðxÞj ¼ 0 almost everywhere:

Proof. By Definition 3, it is obvious that

h� 1
2
ð f ÞðxÞpr� 1

2
ð f ÞðxÞ þ j f ðxÞj:

Hence jjh� 1
2
ð f ÞjjpCjjf1

2
jj by Lemma 2. Given e40; we choose mAN big enough such

that

jj f � s0mð f Þjjpjj f1
2
� s0mð f1

2
Þjjoe

and write g ¼ s0mð f Þ for simplicity. Since

lim sup
N-N

log�
1
2Njs0Nð f ÞðxÞj ¼ lim sup

N-N

log�
1
2Njs0Nðf � gÞðxÞjph� 1

2
ð f � gÞðxÞ;

we get

lim sup
N-N

log�
1
2Njs0Nð f Þj

����
����

����
����pCjjð f � gÞ1

2
jjoCe:

So, by the arbitrariness of e; the left-hand side of the above inequality is zero. &
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4. Proof of the theorems

We first prove the following lemma.

Lemma 3. For all s40 and r4� 1; the condition ðfs; rgÞ implies the condition ðf2; rgÞ:
We will verify this by using K-functionals concerning the derivatives. Let

fAL2ðSn�1Þ and s40: If there exists a function gAL2ðSn�1Þ such that

gB
XN
k¼1

ðkðk þ n � 2ÞÞ
s
2Ykð f Þ;

then g is called the derivative of degree s of f and is written as g ¼ Dsf ¼ f ðsÞ:

Following [5], the sth K-functional Ksð
; tÞ on L2ðSn�1Þ is defined by

Ksð f ; tÞ ¼ inffjj f � gjj þ tsjjgðsÞjj: gðsÞAL2ðSn�1Þg:

Lemma 4 (see Ditzian [3]). If 0oaob; then

Kað f ; tÞpCða; bÞta
Z 1

t

Kbð f ; uÞu�a�1 du:

Lemma 5 (see Kalyabin [5]). Suppose s40 and fAL2ðSn�1Þ: Then

osð f ; tÞpBn;sKsð f ; tÞpB0
n;sosð f ; tÞ for all t40:

By Lemmas 2 and 3, we get directly that, for 0oaoboN;

oað f ; tÞpCða; bÞta
Z 1

t

obð f ; uÞ
uaþ1 du: ð16Þ

Proof of Lemma 3. Assume 0oso2: By (6) we know that if the condition ðfs; rgÞ
holds, then ðf2; rgÞ holds also. Now we assume that 2os and ðfs; rgÞ holds. Then,
by (16),

o2ð f ; tÞpCst
2

Z 1

t

osð f ; uÞ
u3

du

and hence, by Schwarz inequality,

o2ð f ; tÞ2pCst
4

Z 1

t

osð f ; uÞ2

u2
du

Z 1

t

u�4 dupCst

Z 1

t

osð f ; uÞ2

u2
du:
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Then we getZ 1

0

o2ð f ; tÞ2

t
logr 2

t

� 
dtpCs

Z 1

0

logr 2

t

� Z 1

t

osð f ; uÞ2

u2
du dt

pCs

Z 1

0

osð f ; uÞ2

u2

Z u

0

logr 2

t

� 
dt

� 
du

pCs

Z 1

0

osð f ; tÞ2

t
logr 2

t

� 
dt: &

From Lemma 3, to prove Theorems 1 and 2, it suffices for us to prove both
for s ¼ 2:

Proof of Theorem 1. Assume rX1:

Let fAL2ðSn�1Þ: If f satisfies the condition ðf2; rgÞ; then by Theorem 3,

fAL2
rþ1
2

ðSn�1ÞCL2
1ðSn�1Þ:

We first consider the case of r ¼ 1: In this case the result is known (see [2]). In fact,

for any function fAL2
1; the almost everywhere convergence of the orthogonal

expansion of f holds by a general theorem for orthogonal series (see [4, p. 190 for
Russian translation]). But for the completeness we give a very short proof here.

Generally, for a40 and fAL2

aþ1
2

ðSn�1Þ; by using Abel transform twice, we have, for

NX3;

s0Nð f Þ ¼
XN

k¼0
Ykð f Þ ¼

XN

k¼0
makYkð faÞ

¼
XN�2

k¼0
ðk þ 1ÞD2maks1kð faÞ þ ðN � 1ÞDmaN�1s

1
N�1ð faÞ þ maNs

0
NðfaÞ;

where

mak :¼ 1

logaðk þ 2Þ; Dmak :¼ mak � makþ1; D2mak :¼ Dmak � Dmakþ1:

Then we get

s0�ð f ÞpCaðs1�ð faÞ þ r�að faÞÞ:

Hence, by Lemma 2 and the boundedness of s1�; we get

jjs0�ð f ÞjjpCjjs1�ð f1
2
Þjj þ jjr� 1

2
ð f1
2
ÞjjpCjjf1jj:

Thus, for all fAL2
1ðSn�1Þ;

lim
N-N

s0Nð f ÞðxÞ ¼ f ðxÞ almost everywhere: ð17Þ
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Next we assume r41: Fix N42 temporarily and let m4N: Then

s0mð f Þ � s0N�1ð f Þ ¼
Xm

k¼N

Ykð f Þ ¼
Xm

k¼N

m
r
2
kYkð fr

2
Þ:

Using Abel transform, we get

s0mð f Þ � s0N�1ð f Þ ¼
Xm�1

k¼N

Dm
r
2
ks

0
kð fr

2
Þ þ m

r
2
mðs0mðfr

2
Þ � s0N�1ðfr

2
ÞÞ:

Since fr
2
AL2

1
2

ðSn�1Þ; by Corollary 1 we know

lim
m-N

m
r
2
mðs0mð fr

2
Þ � s0N�1ð fr

2
ÞÞ ¼ 0 almost everywhere ðrX1Þ: ð18Þ

Taking the limit m-N and applying (18) yield

f � s0N�1ð f Þ ¼
XN
k¼N

Dm
r
2
ks

0
kðfr

2
Þ almost everywhere:

Notice that jDm
r
2
kjpC

1

k log1þ
r
2 k

ðk42Þ: We get

jf � s0N�1ð f ÞjpC
XN
k¼N

1

k log1þ
r�1
2 k

r� 1
2
ð fr
2
Þp C

log
r�1
2 N

r� 1
2
ð fr
2
Þ almost everywhere:

Applying Lemma 2, we obtain

jjhr�1
2
ð f ÞjjpCjjfrþ1

2
jj;

which implies, by a routine argument, the conclusion of Theorem 1 for r41: &

Proof of Theorem 2. Assume 0pro1 and f satisfies ðf2; rgÞ: We write a ¼ r�1
2
for

convenience. Then � 1
2
pao0: By Theorem 3, fAL2

aþ1ðSn�1Þ: We have, for N43;

s0Nð f Þ ¼
XN�1

k¼0
Dm

r
2
ks

0
kð fr

2
Þ þ m

r
2
Ns

0
Nð fr

2
Þ:

Then

logaðN þ 2Þjs0Nð f ÞjpC
XN�1

k¼0

logaðN þ 2Þ

ðk þ 2Þlogaþ
3
2ðk þ 2Þ

js0kð fr
2
Þj þ 1

log
1
2ðN þ 2Þ

js0Nð fr
2
Þj

pCarð faþ1Þ:

Therefore,

jjhað f ÞjjpCajj faþ1jj ¼ Cajj frþ1
2
jj:

By this we finish the proof. &
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