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Abstract

The almost everywhere convergence rates of Fourier—Laplace series are given for functions
in certain subclasses of L>(Z,_;) defined in terms of moduli of continuity.
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1. Introduction and main results

Letn>3andletZ, = {(x1, ... ,x,) : X7 + --- + x> = 1} be the unit sphere of R”
equipped with the normal Lebesgue measure. Let fe L?>(Z,_ ;) and let

f~a(f)(x) =

[M]s

Yi(f) (%) (1)

~
Il

0
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be the Fourier—Laplace series of f, where Y, is the projection operator from
L*(Z,_1) to the space of all spherical harmonics of degree k. The Cesaro means of
order ¢ of o(f) are defined as usual by

o (f) = (A%)~ Z AS

where

[(N+5+1)
I+ DI(N+1)

A5 = o> —1, (2)

are the coefficients of the power series of the function (1 — x) ™", [x|<1; i.e.
< X N
(1—x)"=>" Ak, (3)
k=0

It is obvious that 6% (f) = S0, Yi(f) is just the Nth partial sum of the Fourier—
Laplace series of f.

Our main purpose is to find the convergence rate of 6% (/) on a set of full measure
in X, ;| for any f in certain subclasses of L?(X, ;) defined in terms of modulus of
continuity.

In order to define modulus of continuity on the sphere, we first introduce the
translation operator Sy with step 0eR. As in [7, p. 58], we define

1

|Zn*2| {yeZ,_1: xy=0}

So(f)(x) = f(xcosf+ ysinf)d/(y),

here xeX,_; and d/(y) denotes the usual Lebesgue measure elements on the n — 2
dimensional manifold {yeX,_;: xy = 0}. We know (see [7, p. 61, (2.4.6)]) that, for
every k=0,1,2, ...,

Yi(So(f)) = Pi(cos 0) Yi(f),
where P is Gegenbauer polynomial defined by

P(n 3 n= 3) (z)

Pn
0=,

<t (4)

with P,(f’m being Jacobi polynomial. By the formulas [6, p. 58, (4.1.1)] and [p. 168,
(7.32.2)], we have

| Py (cos 0)| < %, for all 0e(0,7), (5)
(ko — 0))'T
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where y>1 is a constant depending only on n. Then we get

1
e 2
1Se(S)Il> = (Z | Py (cos 9)|2||Yk(f)||§> <[If1-

k=0

Thus, we conclude that as an operator from L*(%, ;) to L*(Z, i), Sp has
norm 1; that is, [|Sy|[ 12z, ) 125, ,)) = 1- Let I be the identity operator and let s be a

711

positive number. We set 1//3( )
Bt
an sth order difference operator. It is obvious that

M 0)]
(Lz(zn—l)st(znfl)) g ST =%
k=0 ’

)2. Following [5], we call the operator

(1-
)

I\)Iw

A?)— (I - Sg

114

We define (as in [5]) the sth order modulus of continuity of a function f € L>(Z,_;) by
ws(f, 1), = sup{||A; fll: O<u<t}.

Since all of our discussion are in L?(X,_;), in what follows, we will omit the
subscription “2” in the norm and in the moduli.
It is well known (see [5]) that, for 0<au<p and feL*(Z, 1),

wp(f, 1)< Cla, B (1 1), (6)

where C(a, ) is a constant depending only on o and f.

Definition 1. Let s>0,7eR, and feL*(Z, ;). If

/0 a)x({,) g()dl<oo

then we say that f satisfies the condition ({s,r}).

Our first result is the following theorem:

Theorem 1. Let r>=1. If there exists s>0 such that f satisfies the condition ({s,r}),
then

AN ) =0 | as Nooo
log2 N

holds on 2, almost everywhere.

Our second theorem is about the case 0<r<1.
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Theorem 2. Let 0<r<1. If there exists s >0 such that f satisfies the condition ({s,r}),
then

—1
Jim 1og T N(o%(/)(x) — f(x)) =0
holds on 2, almost everywhere.
Remark 1. Since the modulus of continuity is defined in square integrable terms, the

convergence rate in L?-norm can be obtained easily. For example, if f satisfies the
condition ({2,r}), i.e.

foi~ S 0@ Tk +2) Yl ) eLA (S, ),

then we can casily get

1
© 2
—r 1
”“°~<f>—fllz—{ > log <*‘><k+2>|n<fﬂ>|§} =o|l —r——
k=N+1 2 IOgT(N+2)

, rtl
This order log™ 2

ﬂ
log™ 2 N.

N is better than the almost everywhere convergence rate

Remark 2. Both Theorems 1 and 2 have the same form. However, when r>1, we
really get the convergence rate like Theorem 1; when 0<r<1, we cannot conclude
whether ¢%,(f) converges almost everywhere but get only the almost everywhere

-1
convergence of longN(as)v(f) —f).

Before proving the theorems, we will introduce some function classes related to the
condition ({s,r}). Given a function f'€ L>(%,_;) and a positive number r, if
o0
S log” (k + 2)|| Yi(f)|F < o,
k=0

then we say f € L2(X, ;) and write

Jr= i log’(k +2)Yi(f) in L*(Z, ;) sense. (7)
k=0

In Section 2, we give a characterization for the function class L2(X, ) in
terms of the modulus of continuity. In Section 3, we give a domination for
maximal partial sum with “log” factor of Fourier—Laplace series which plays
the key role for proving the main theorems. In Section 4 we complete the proofs of
the theorems.
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2. Characterization of the class L>(X, )

Theorem 3. Let r> — 1. The necessary and sufficient condition for f e L? 1 (Zt) ds

that [ satisfies ({2,r}).

2

Proof. Assume fel? (%, ;) first. Then

r+1

2

and

8

1A7(NIIF =D (1 = Pi(eos )| Ye(S)II*. (8)

k=1
Applying the formula (see [6, p. 81], [7, p. 31])
d k(k+n—2)

Y pn _ +2
lek(l) n—1 PZ—I(I)7
we have
-2
1 — P}(cos0) = %Pﬁ%(cos &)(1 —cos0),

where &€ (0, 0). Taking (5) into account, we hence have

0<1 — P}(cos 0) < (k0)*. (9)
It follows from (5) and 52 >1 that

|Pi(cos 0)| <) for 0e(0,1) and k0=>4y>. (10)
Write

S (1) = sup{|1 — Pi(cos 0)[*:0<0<1}, 1€(0,1).
By (8) we get

Applying (9) and (10), we have
1, Wkl <t<l, k>4,
Sr()<{ (kt)*, 0<t<4?k', k>4, (11)
(kt)*<B,i*, 0<i<]1, k<4)?,
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where B, is a constant depending only on n. From (11) we derive that

/0 5kt( )l og ( )dt<B log" ™ (k 4 2).

Since fel? 21(Zy-1) as an assumption, we see that f satisfies the condition
2

({2,r}).

We now assume that f satisfies the condition ({2,r}). We start from (8). Then

Z/ (1 — Pi(cost))’t 1log(>a’l||Yk( )P

/ IA2(f)]]*r og" ( )dt<oo
Hence

0 1
> [ 0= Piteosoi g (3) el )P < o
k>4y?

2k

So, by (10) we obtain

o0 1
> 1log()dr||Yk< < oo,
2 Jay2k!

k>4y

which implies fe L2, |(Z,-1). O
2

3. Domination for Fourier—Laplace partial sums with log factors

From (2) we derive the well-known formula for Cesaro numbers:

AP = ZA“‘I 2>0, B> — 1.

By this formula and (3) we get, for feL*(Z, ),
1 1

N1 1 _1
— Z A2 A4, 20 2(f). (12)
k=0

Denote by ¢7 the maximal Cesaro operator of order «; that is,
o:(f)(x) = sup{|o(f)(x)| : keN}, o> —1, xeX, .

It is well known (see [1]) that, for >0, ¢ is bounded from L*(Z, 1) to L*(Z,_1).
We introduce an operator on L?(Z, 1) as follows:
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Definition 2. For fe L*>(Z,_;), define

N 1 1 1 1 N 1 11
oY (NI D A2, 2o () — ar (N + Y Ay A4, 2ot (f)]
k=0 k=0
N o1 2 1
< (Z(Aﬁf) 3(f)+a2(f)
k=0
< Clog(N +2)5(/) + (),

where C is a proper constant.

Lemma 1. The operator J is bounded from Li(Zn,l) to L*(Z,_1); ie.
2

(NI CIIAIl for feLg(Zn_l),

where C is a proper constant.

Proof. We have

So,

109
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< €Y log(j + DI Y/
j=1

<C||f%||2. O

Definition 3. Let «> — 1. For feL*(X, ), define
p,(f)(x) = sup{log” N|o% (f)(x)| : N>3} (14)

hy(f)(x) = sup{log” N| f(x) — % (f)(x)| : N=3}. (15)

Lemma 2. For feL3(Z, 1),
2

lp_ 1 (OII<CIIA]-
2 2

Proof. This is a direct consequence of (13), Lemma 1, and the boundedness
1

of 2. O

Corollary 1. If feL3(Z,_,), then
2

1
Nlim log” 2 N|a%(f)(x)| =0 almost everywhere.
— 00

Proof. By Definition 3, it is obvious that
h (<P (6 + 1703

Hence || 1(f)||<CJ|fi]| by Lemma 2. Given ¢ >0, we choose me N big enough such
72 2
that

I1f = oI If = ol <e
and write g = ¢° () for simplicity. Since

lim sup log™ %N|a?\,(f)(x)| = lim sup log~ %N|a9v(f' —9)X)|<h 1((f —9)(x),

1

we get

1
imsup log” 4163, | <CIILf - o)l <Co

N— o

So, by the arbitrariness of &, the left-hand side of the above inequality is zero. [
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4. Proof of the theorems
We first prove the following lemma.

Lemma 3. Forall s>0andr> — 1, the condition ({s,r}) implies the condition ({2,r}).
We will wverify this by using K-functionals concerning the derivatives. Let
fel*(Z, 1) and s>0. If there exists a function ge L*(X,_1) such that

% s
g~ (k(k +n—=2)2Yi(f),
k=1
then g is called the derivative of degree s of f and is written as g = DSf = f1¥)
Following [5], the sth K-functional K(-,#) on L?*(Z,_;) is defined by

K (f,0) = inf{||f = gll + £llg¥]|: ¢ € L*(£,-1)}-
Lemma 4 (see Ditzian [3]). If 0<a<f, then

Ki(f,0<Clop)r / Koo da

Lemma 5 (see Kalyabin [5]). Suppose s>0 and f e L*(Z,_1). Then

oy(f, 1)< By K(f,1)<B, oy f,1) for all t>0.

By Lemmas 2 and 3, we get directly that, for 0<a<pf < o0,
1
ontf)<capr [ 2L (16)
t

Proof of Lemma 3. Assume 0<s<2. By (6) we know that if the condition ({s,r})
holds, then ({2,r}) holds also. Now we assume that 2<s and ({s,r}) holds. Then,
by (16),

1 .
wz(f,t)scsﬂ/ Wdu

t

and hence, by Schwarz inequality,

2
wz(f,t)zscsz“/ s/ ) W’ du/ 4du<Csz/lws(u#du.

t
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Then we get

/;Mlog<>dt<C/ 10g<)/ dudt
<o ( bg() )
SCS/OIMIgC)dt O

From Lemma 3, to prove Theorems 1 and 2, it suffices for us to prove both
for s = 2.

Proof of Theorem 1. Assume r>1.
Let fe L*(Z,_1). If f satisfies the condition ({2,7}), then by Theorem 3,

fGL,Z.il(anl) CL%(anl).
2
We first consider the case of r = 1. In this case the result is known (see [2]). In fact,
for any function fel?, the almost everywhere convergence of the orthogonal
expansion of f holds by a general theorem for orthogonal series (see [4, p. 190 for

Russian translation]). But for the completeness we give a very short proof here.
Generally, for «>0 and feL*> |(£,_1), by using Abel transform twice, we have, for
aHri

N3,

N N
() =D V) =D i Yu(f)
k=0

k=0
N=2
= (k+ DA op(f) + (N = DAWy_ oy (f) + iy (1),

k=0

where

o 1 o o o o o o
My = log?(k + 2)’ Api = 1 — My N = A — Apt -
Then we get

U (f) S Caloy(fo) + (1),
Hence, by Lemma 2 and the boundedness of ¢!, we get

oAUl +lle_ (A< CIALL

Thus, for all feL}(Z,_1),
ngnOC a%(f)(x) =f(x) almost everywhere. (17)
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Next we assume r>1. Fix N >2 temporarily and let m> N. Then

m m

COURLSIGEDIEUUEDS SAT)

k=N
Using Abel transform, we get

m—1

() = o1 () =D Moy (fr) + pim(ay, (fr) = o (f2))-
k=N
Since f% eL}(Z,-1), by Corollary 1 we know
2

lim u2(c° (f;) S l(fr)) =0 almost everywhere (r=1). (18)

Taking the limit m— oo and applying (18) yield

f—a% i ( Z A,ukak(fr almost everywhere.

. z |
Notice that [Api| < C———— (k>2). We get
klog'"2 k
. & 1 C
If — aN_l(f)|<CZ —p_1(f1)S———>p l(fr) almost everywhere.
i~ klog" 2 k 2 % logz N 2
Applying Lemma 2, we obtain

s (NI < Cllfesall,
2 2
which implies, by a routine argument, the conclusion of Theorem 1 for r>1. [

Proof of Theorem 2. Assume 0<r<1 and f satisfies ({2,r}). We write oo = 5! for

convenience. Then —§<oc<0 By Theorem 3, fe L2, (X, ;). We have, for N>3

o+1

Then

N-1 o
log”(N + 2 1
W2 o))+ o)
k=0 (k +2)log"*2(k + 2) log2(N +2)

< Cop(fauy1)-

log*(N +2)|o} (f)|< C

Therefore,

1 (NS Call faall = Call gl

By this we finish the proof. [
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